Lambient

Technologie

Terms and Definitions

e = 2.71828 i = √-1 π = 3.14159	Base of natural logarithm Square root of -1 Pi
$\varepsilon_0 = 8.854 \text{ x } 10^{-14} \text{ F/cm}$ $k = 8.61733 \text{ x } 10^{-5} \text{ eV/K}$ $q = 1.602 \text{ x } 10^{-19} \text{ C}$	Permittivity of free space Boltzmann's constant Magnitude of electronic charge
$ \begin{array}{l} f \\ \omega = 2\pi f \\ q \\ t \end{array} $	Frequency (cycles/s or Hz) Angular frequency (radians/s) Charge (coulomb) Time (s)
σ $\rho = 1/\sigma$ ε $\varepsilon^* = \varepsilon_0 (\varepsilon' - i\varepsilon'')$ $\kappa = \varepsilon' - i\varepsilon''$ $\varepsilon' = \operatorname{Re}(\varepsilon^*/\varepsilon_0)$ $\varepsilon'' = \operatorname{Im}(\varepsilon^*/\varepsilon_0) = \sigma/\omega\varepsilon_0$ $D = \tan \delta = \varepsilon''/\varepsilon'$ $\delta = \tan^{-1}(\varepsilon''/\varepsilon')$ $\delta \sim \varepsilon''/\varepsilon'$ A/D	Conductivity (ohm ⁻¹ – cm ⁻¹) Resistivity, or ion viscosity (ohm-cm) Permittivity (F/cm) Permittivity as a complex quantity (F/cm) Relative permittivity* or dielectric constant (unitless) Relative permittivity* or dielectric constant (unitless) Loss factor or loss index (unitless) Dissipation factor or loss tangent (unitless) Delta (unitless) Delta for small $\varepsilon'/\varepsilon'$ (unitless) Ratio of electrode area to distance between parallel plate electrodes (cm)
V $I = q/t$ $C = q/V$ $G = I/V$ $R = V/I = 1/G$	Voltage (volt) Current (amp) Capacitance (farad) Conductance (ohm ⁻¹) Resistance (ohm)

* There is inconsistency in use of the term *relative permittivity*. In some literature it is the complex quantity $\varepsilon/\varepsilon_0 = (\varepsilon' - i\varepsilon'')/\varepsilon_0$ and in others it is the real part of permittivity $\text{Re}(\varepsilon/\varepsilon_0) = \varepsilon'$.

$C = \varepsilon_0 \varepsilon' A/D$	Capacitance (farad)
$G = \sigma A/D$	Conductance (siemens or ohm ⁻¹)
$R = \rho / (A/D)$	Resistance (ohm)
$Y = G + i\omega C$	Admittance (siemens or ohm ⁻¹)
$Z = 1/Y = 1/(G + i\omega C)$	Impedance (ohm)
$lpha_{ m max}$	Degree of cure (unitless, between 0 and 1) Maximum degree of cure at cure temperature
$M_{ m w}$	Molecular weight (gm/mole)
$M_{ m w0}$	Molecular weight at $\alpha = 0$ (uncured)
$M_{ m w\infty}$	Molecular weight at $\alpha = 1$ (fully cured)
T _{Cure}	Cure or process temperature (K or °C)
T _g	Glass transition temperature (K or °C)

ε' (free space)	= 1.0	Relative permittivity of free space
ε' (air)	= 1.0	Relative permittivity of air
ε' (teflon)	~ 2.2	Relative permittivity of teflon
ε' (mineral oil)	~ 2.2	Relative permittivity of mineral oil
ε' (polyimide)	~ 3.6	Relative permittivity of polyimide
arepsilon' (alumina)	~ 9.8	Relative permittivity of alumina

DiBenedetto *T*_g model:

$$\frac{(T_{\rm g}-T_{\rm g0})}{(T_{\rm g\infty}-T_{\rm g0})} = \frac{\lambda \, \alpha}{(1-(1-\lambda) \, \alpha)}$$

Where:
$$T_g$$
= Glass transition temperature (K or °C) T_{g0} = Glass transition temperature at α = 0 (uncured) T_{gmax} = Maximum glass transition at T_{Cure} $T_{g\infty}$ = Glass transition temperature at α = 1 (fully cured) λ = Adjustable parameter

Debye relaxation for relative permittivity and loss factor:

$$\varepsilon' = \varepsilon'_{u} + \frac{\varepsilon'_{r} - \varepsilon'_{u}}{1 + (\omega\tau)^{2}} , \qquad \varepsilon'' = \sigma / \omega \varepsilon_{0} + (\varepsilon'_{r} - \varepsilon'_{u}) \frac{\omega \tau}{1 + (\omega\tau)^{2}}$$

Where: $\varepsilon'_{u} =$ Unrelaxed (high frequency) relative permittivity $\varepsilon'_{r} =$ Relaxed (low frequency) relative permittivity $\omega = 2\pi f$ (radians/s) $\tau =$ Dipole relaxation time (s)

Havriliak-Negami relaxation for relative permittivity and loss factor:

$$\varepsilon' = \varepsilon'_{u} + (\varepsilon'_{r} - \varepsilon'_{u}) (1 + 2(\omega\tau)^{\alpha} \cos(\pi\alpha/2) + (\omega\tau)^{2\alpha})^{-\beta/2} \cos(\beta\theta)$$
$$\varepsilon'' = (\varepsilon'_{r} - \varepsilon'_{u}) (1 + 2(\omega\tau)^{\alpha} \cos(\pi\alpha/2) + (\omega\tau)^{2\alpha})^{-\beta/2} \sin(\beta\theta)$$

Where: $\begin{aligned} \theta &= \tan^{-1}[(\omega\tau)^{\alpha} \sin(\pi\alpha/2) / (1 + (\omega\tau)^{\alpha} \cos(\pi\alpha/2))] \\ \alpha &= \text{Empirical "broadness" parameter} \\ \beta &= \text{Empirical "asymmetry" parameter} \\ \varepsilon'_{u} &= \text{Unrelaxed (high frequency) relative permittivity} \\ \varepsilon'_{r} &= \text{Relaxed (low frequency) relative permittivity} \\ \omega &= 2\pi f (\text{radians/s}) \\ \tau &= \text{Dipole relaxation time (s)} \end{aligned}$ Apparent relative permittivity and loss factor due to electrode polarization:

$$\varepsilon'_{x} = \varepsilon' (D / 2t_{b}) \frac{(\varepsilon''/\varepsilon')^{2} + (D / 2t_{b})}{(\varepsilon''/\varepsilon')^{2} + (D / 2t_{b})^{2})}$$
Apparent relative permittivity
$$\varepsilon''_{x} = \varepsilon'' (D / 2t_{b}) \frac{(D / 2t_{b}) - 1}{(\varepsilon''/\varepsilon')^{2} + (D / 2t_{b})^{2})}$$
Apparent loss factor

Where: t_b = boundary layer thickness D = distance between electrodes or plate separation ε'_x = uncorrected permittivity ε''_x = uncorrected loss factor ε' = actual permittivity $\varepsilon'' = actual loss factor$

Lambient Technologies, LLC 649 Massachusetts Ave., Cambridge MA 02139, USA (857) 242-3963 https://lambient.com info@lambient.com