Insight - Application Note 3.28
 Calculating A/D Ratio and Base Capacitance

Sensor capacitances

The cross section of the planar electrodes shown in Figure 28-1 shows that the total capacitance $C_{\text {tot }}$ is the sum of $C_{\text {MUt }}$ from the Material Under Test above electrodes and $C_{\text {base }}$ from the substrate beneath the electrodes. This second component $C_{\text {base }}$ is called the base capacitance.

Figure 28-1

Cross section of interdigitated electrode structure

The total capacitance measured by the interdigitated electrodes is:

$$
\begin{equation*}
C_{\text {tot }}=C_{\text {MUT }}+C_{\text {base }} \tag{eq.28-1}
\end{equation*}
$$

The capacitance of the Material Under Test is calculated as shown below:

$$
\begin{equation*}
C_{\text {MUT }}=\varepsilon_{0} \varepsilon_{\text {MUT }}^{\prime} A / D \tag{eq.28-2}
\end{equation*}
$$

Calculating base capacitance with known A/D

It is possible to determine the base capacitance of a sensor by measuring its response in two different, non-conducting materials of known permittivity. To determine base capacitance, measure the sensor capacitance in air.

$$
\begin{equation*}
C_{\text {tot-air }}=C_{\text {MUT-air }}+C_{\text {base }} \tag{eq.28-3}
\end{equation*}
$$

Then measure the sensor capacitance in a second, non-conducting fluid. Food grade mineral oil is a good second fluid because it is readily available, has very low conductivity and uniform characteristics. The relative permittivity of food-grade mineral oil is about 2.2.

$$
\begin{equation*}
C_{\text {TOT-oil }}=C_{\text {MUT-oil }}+C_{\text {base }} \tag{eq.28-4}
\end{equation*}
$$

Sum together equations 28-3 and 28-4.

$$
\begin{equation*}
C_{\text {tot-air }}+C_{\text {tot-oil }}=C_{\text {MUT-oil }}+C_{\text {MUT-oil }}+2 C_{\text {base }} \tag{eq.28-5}
\end{equation*}
$$

$C_{\text {tot }}$ is measured in each case, and $C_{\text {MUT }}$ is calculated in each case from equation 28-2 using the known permittivity of each Material Under Test and the A / D ratio of the sensor. Then $C_{\text {base }}$ can be calculated using equation 28-6:

$$
\begin{equation*}
C_{\text {base }}=1 / 2\left[\left(C_{\text {tot-air }}+C_{\text {tot-oil }}\right)-\left(C_{\text {MUT-air }}+C_{\text {MUT-oil }}\right)\right] \tag{eq.28-6}
\end{equation*}
$$

Calculating base capacitance and A / D when both are unknown

Both the A / D ratio and the base capacitance are required to fully describe a sensor. If they are both unknown then the two measurements described previously can be used to create a system of two equations in two unknowns which can be solved with basic algebra. Equations 28-3 and 28-4 are repeated below:

$$
\begin{align*}
& C_{\text {tot-air }}=C_{\text {MUT-air }}+C_{\text {base }} \tag{eq.28-3}\\
& C_{\text {TOT-oil }}=C_{\text {MUT-oil }}+C_{\text {base }}
\end{align*}
$$

The capacitance for the Material Under Test for equations 28-3 and 28-4 can be rewritten using equation 28-2:
$C_{\text {TOT-air }}=\left(\varepsilon_{\text {MUT-air }} \varepsilon_{0}\right) A / D+C_{\text {base }}$
(eq. 28-8)
$C_{\text {TOT-oil }}=\left(\varepsilon_{\text {MUT-oil }}^{\prime} \varepsilon_{0}\right) A / D+C_{\text {base }}$

Equations 28-7 and 28-8 make up a system of two equations in two unknowns, where the unknowns are the A / D ratio and $C_{\text {base. }}$. First, these equations can be solved for the A / D ratio:
(eq. 28-9) $\quad A / D=\left(C_{\text {TOT-air }}-C_{\text {TOT-oil }}\right) /\left(\varepsilon_{0}\left(\varepsilon_{\text {MUT-air }}^{\prime}-\varepsilon_{\text {MUT-oil }}^{\prime}\right)\right)$

Knowing the A / D ratio, $C_{\text {base }}$ can then be calculated from equation $28-6$ and equation 28-2.

Lambient Technologies, LLC 649 Massachusetts Ave., Cambridge MA 02139, USA (857) 242-3963 https://lambient.com info@lambient.com

